Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules.

نویسندگان

  • Stephen J Fox
  • Chris Pittock
  • Thomas Fox
  • Christofer S Tautermann
  • Noj Malcolm
  • Chris-Kriton Skylaris
چکیده

Biomolecular simulations with atomistic detail are often required to describe interactions with chemical accuracy for applications such as the calculation of free energies of binding or chemical reactions in enzymes. Force fields are typically used for this task but these rely on extensive parameterisation which in cases can lead to limited accuracy and transferability, for example for ligands with unusual functional groups. These limitations can be overcome with first principles calculations with methods such as density functional theory (DFT) but at a much higher computational cost. The use of electrostatic embedding can significantly reduce this cost by representing a portion of the simulated system in terms of highly localised charge distributions. These classical charge distributions are electrostatically coupled with the quantum system and represent the effect of the environment in which the quantum system is embedded. In this paper we describe and evaluate such an embedding scheme in which the polarisation of the electronic density by the embedding charges occurs self-consistently during the calculation of the density. We have implemented this scheme in a linear-scaling DFT program as our aim is to treat with DFT entire biomolecules (such as proteins) and large portions of the solvent. We test this approach in the calculation of interaction energies of ligands with biomolecules and solvent and investigate under what conditions these can be obtained with the same level of accuracy as when the entire system is described by DFT, for a variety of neutral and charged species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles Studies of the Structure and Dynamics of Biomolecules

First-principles biosimulations have become an essential tool in the study of atoms and molecules and, increasingly, in modelling complex systems as those arising in biology. With the appearance of density-functional theory, and gradient-corrected exchange-correlation functionals, the ability to obtain an accurate enough solutions to the electronic Schrödinger equation for systems containing hu...

متن کامل

Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this contex...

متن کامل

Large-Scale Electronic Structure Calculations with Real-Space grid Density-Functional Theory code

First-principles quantum-mechanical electronic structure calculations based on the density-functional theory (DFT) is an important ingredient of material sciences. The system sizes handled in usual DFT calculations are limited within a thousand of atoms due to the computational complexity of fully quantummechanical approaches. Real-space DFT (RSDFT) code, which has been developed in our group, ...

متن کامل

Fragment quantum mechanical calculation of proteins and its applications.

Conspectus The desire to study molecular systems that are much larger than what the current state-of-the-art ab initio or density functional theory methods could handle has naturally led to the development of novel approximate methods, including semiempirical approaches, reduced-scaling methods, and fragmentation methods. The major computational limitation of ab initio methods is the scaling pr...

متن کامل

Encoding electronic structure information in potentials for multi-scale simulations: SiO2

Potentials generally used in molecular dynamics (MD) simulation of SiO2 properties customarily are calibrated to a combination of computed molecular electronic structure data and experimental crystalline data. The present study tests parametrization to data from high-level, first-principles electronic structure calculations alone. The issue is crucial to the success of multi-scale simulations. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 22  شماره 

صفحات  -

تاریخ انتشار 2011